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Abstract

We study the axial and planar multi-index assignment prob-
lem under the lens of the (k,s)-Assignment problem, i.e., a
framework that encompasses all assignment structures. Tak-
ing advantage of the complementary strengths of approaches
to optimization, we develop for the problem at hand an in-
tegrated solver that offers, constraint propagation, problem-
specific cuts, SoS-I branching and a new variant of the Fea-
sibility Pump heuristic that uses cutting planes within the
pumping cycles of the algorithm. All these components,
when combined in a B&C algorithm for the 3-index axial and
planar cases, reduce both the time and the number of nodes in
the search tree, particularly for larger instances. This effect
is more evident in the planar case, where the number of con-
straints increases quadratically compared to the axial assign-
ment. Apart from literature, non-polynomial, instances we
generate and examine large-size instances for which a com-
petitive commercial solver runs out of memory. Further re-
search includes testing this algorithm on the 4-etc-index size
axial and planar assignment problems.

Introduction

Assignment structures are embedded in many optimization
problems. In general, an assignment occurs whenever a
member of an entity must be allocated to a member of
another entity. The simplest case is the well-known 2-
index assignment (Martello and Toth 1987) equivalent to the
weighted bipartite matching. Other well-studied variants of
assignments are the 3-index axial (Pierskalla 1968) and pla-
nar (Frieze 1983) assignments among with their generaliza-
tion, i.e., the multi-index axial and planar assignment prob-
lems. There are numerous applications of these assignment
problems. For example, axial assignments apply to data-
association problems (Poore and Gadaleta 2006), wafer-to-
wafer yield optimization in 3D electronic circuit printing
(Taouil and Hamdioui 2011), statistical design of experi-
ments (Higgins 2013), while planar assignments share the
diverse applications of orthogonal and mutually orthogonal
Latin squares (Laywine and Mullen 1998).

The (k,s)—Assignment Problem (Appa, Magos, and
Mourtos 2006) encompasses all these assignment structures.
Hereafter we denote it as (k, s) AP,. This problem involves
the elements of k& disjoint n-sets such that each s-tuple of
elements, each from a different set, appears exactly once at
any given solution. Parameter %k defines the number of sets,
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n determines the cardinality of the sets while s determines
the type of assignment. Hence, its Integer Programming (IP)
model consists of n*, k-indexed binary variables and (f) -n®
equality constraints each of which has s indices fixed to spe-
cific values and k£ — s indices to be summed over all the val-
ues of their domains. The right-hand side for each constraint
is equal to one.

To formally define this IP, let K = {1,...,k}and S C K
denote a subset of s indices (out of k). Let Qs denote the
collection of all such distinct S, i.e., Qrs = {S C K :
S| = s} and |Qk,s| = (¥). Consider k disjoint n -sets
My, Ms,..., My and let m* € M;,Vi € K. For S C K,
assume S = {iy,42,...,is} such that i; < ig < -+ < 4.
Let M = My, x M;, x --- x M;_and m® € M*, where
m? = (m%,m® ... mi). Observe that, for S’ C S C K,
m5’ defines a subset of indices of the tuple m?, i.e. m® '
m?. Further, we follow the convention that mf), mi,...de-
note the elements of the set M;, i.e. the values of the index
m‘. In an analogous manner, mg denotes the specific s-tuple
(mg', ..., mg). For the mathematical programming formu-
lation of (k, s)AP,,, consider binary variables z,,x and the
mapping w : M¥ — R. The problem is formulated as
follows (Appa, Magos, and Mourtos 2006).

min Y {w,,x - Tpx : mE € ME}
S{apx : mBNS € ME\SY = 1,vm® € M5, S € Q.
T € {0,137 vmK € MK

Taking advantage of the complementary strengths of dif-
ferent approaches to optimization (Hooker 2012), we de-
velop under the lens of the (k, s)AP, a solver integrating
several algorithmic components, namely, constraint propa-
gation, problem-specific cuts, SoS-I branching among with
a new variant of the Feasibility Pump (FP) heuristic that em-
ployees both constraint propagation and cuts to obtain a bet-
ter feasible solution. Having such a tool-set available, we fo-
cus on the 3-index axial ((3,1)AP,) and planar assignment
((3,2)AP,,) and present a Branch and Cut (B&C) algorithm,
that employees all these components. We test all these com-
ponents of the B&C method, among with the method itself,
on the small and medium size non-polynomial literature in-
stances and also on larger instances generated for the pur-
poses of this work.



The results of this experimentation show that indeed
the proposed FP variant produces better feasible solutions,
while in cooperation with SoS-I branching and problem-
specific cuts, reduces significantly the time and the num-
ber of nodes in the search tree, especially for large-size in-
stances. Hence, the contribution of this work is threefold:

e we investigate the effect of problem-specific cutting
planes on the performance of the FP heuristic;

e we present a B&C for the 3-index axial and planar as-
signment problems which, to the best of our knowledge,
is missing from the (rather extensive) literature;

e we present an integrated solver, in terms of code, that
can be tested on any k-index axial and planar assignment
problems.

Algorithmic components

The algorithmic components developed and used include
problem-specific cuts, constraint propagation and a variant
of the FP heuristic that employees both constraint propa-
gation and cuts to obtain a better feasible solution. Let us
describe each component with the respective research back-
ground individually.

Cutting planes

For both planar and axial assignments we use problem-
specific cuts as obtained from the literature. Regarding
the axial assignment, we employ the two known families
of facet-defining inequalities arising from cliques of the
intersection graph associated with the formulation of the
(k,1)AP,, (Magos and Mourtos 2009), which are polytime
separable; for £ = 3, these are the only families of clique
inequalities (Balas and Saltzman 1989) for which the sep-
aration algorithm used is proven to be O(n3), i.e, of linear
time with respect to the number of variables (Balas and Qi
1993).

For the planar assignment, we use odd-holes cuts, again
induced from the intersection graph, as described in the
literature (Padberg 1973). The separation algorithm used
has a complexity of O(n®) (Magos and Mourtos 2013).
Clique-cuts cannot be used on the 3-index planar assignment
problem, since the only cliques arising from the intersec-
tion graph are the constraints of the problem itself (Euler,
Burkard, and Grommes 1986).

Constraint Propagation

We implement a mechanism that performs constraint propa-
gation for all classes of (k, s)AP, (i.e., for all values of k, s
and n) and capable of supporting any heuristic. This mecha-
nism includes an oracle returning which variables participate
in which constraint; two propagating functions setT'oOne
and setT'oZero and a backtracking function, invoked when
infeasibility is detected.

We use a stack of size n”, i.e., equal to the number of bi-
nary variables, to store the variables that are set to a value
together with a flag per variable indicating whether the vari-
able pushed is set-by-choice or set-by-force (i.e., forced to

k

a value by constraint propagation). This allows backtrack-
ing to jump to the last set-by-choice variable and set it to its
complement hence making it set-by-force. At any point, the
stack being empty (full) implies that infeasibility is reached
(a feasible solution is found).

Once a variable = is set to one, setToOne calls
setT'oZero for all variables appearing in some constraint
together with x. Once a variable is set to zero, setToZero
checks if in any constraint this variable appears, there re-
mains a single variable not set to a value, and calls for this
variable setToOne (if this fails, infeasibility is detected).
Using these two functions, our code implements a recur-
sive depth-first propagation on the constraints of (k, s)AP,.

Since the number of these constraints is (’;) -n® (Appa, Ma-
gos, and Mourtos 2006), i.e., it increases with s, constraint
propagation is more effective for planar rather than axial
problems.

Feasibility Pump

Across the literature there have been several attempts to
tackle heuristically the problem at hand, especially the ax-
ial case, e.g., (Crama and Spieksma 1992; Bandelt, Crama,
and Spieksma 1994; Burkard, Rudolf, and Woeginger 1996).
For an extensive review on such approaches on the axial
case see (Karapetyan and Gutin 2011). Regarding the pla-
nar case, there has not been so many attempts (Magos 1996;
Dichkovskaya and Kravtsov 2006; Gimadi and Glazkov
2007), while recent literature focuses on semi-latin and the
completion of partial Latin squares, indicatively see (Eu-
ler 2010; Casselgren and Haggkvist 2013; Soicher 2013).
However, all these attempts are problem-specific and cannot
tackle the diversity of axial and planar assignment problems.
Hence the need for a general-purpose heuristic that tackles
all assignment structures.

The Feasibility Pump (FP) is a rather recent, yet exten-
sively studied Linear Programming (LP) based heuristic for
mixed integer programs. In general, this algorithm tries to
minimize the distance between an LP-feasible point and its
scalar rounding to the nearest integer point. Thus, the al-
gorithm is mainly guided by feasibility. The first version
of this algorithm (Fischetti, Glover, and Lodi 2005) tackles
only binary problems, while the following one (Bertacco,
Fischetti, and Lodi 2007) focuses on general integer ones.
An additional version (Achterberg and Berthold 2007), is
guided not only by feasibility, but by optimality as well, us-
ing a convex combination of the aforementioned distance
and the initial cost vector. A very interesting version (Fis-
chetti and Salvagnin 2009) uses constraint propagation in
the rounding phase to obtain better feasible points, combin-
ing also the aforementioned optimality criterion. Following
this, it has been shown (Boland et al. 2012) that FP can be
seen as a discrete version of the proximal point algorithm,
while new mechanisms for incorporating restarts of the al-
gorithm have been suggested, such as the addition of cutting
planes. Also, FP has been interpreted (De Santis, Lucidi,
and Rinaldi 2013) as the Frank-Wolfe method applied to a
non-smooth concave merit function, a result that leaded to
new concave non-differentiable penalty functions for mea-
suring solution integrality (De Santis, Lucidi, and Rinaldi



2014).

Intrigued by the nature of this heuristic that allows the use
of different optimization methods, such as constraint prop-
agation, we investigated the effect of problem-specific cuts
before and in the pumping cycles of the algorithm. This
is different from an approach that used cuts in the restart-
phase (Boland et al. 2012), since we use cuts before the
pumping phase to tighten the LP and get a “better” frac-
tional point, and in the pumping phase to enforce feasibility
and reduce the number of cycles. For the (3,1)AP,, we add
clique cuts while for the (3,2)AP,, odd-hole cuts, using the
separation algorithms described previously. For both cases
cuts are added for up to 1 round and up to n®/9 cuts per
round. Considering that we treat the problem at hand as a
minimization problem, adding cuts in the heuristic implies
that we use them to improve the upper-bound (whereas, typ-
ically, adding cuts within B&C utilizes them for improving
the lower bound).

We focus on the objective version which we denote as
OFP1 (Achterberg and Berthold 2007), OFP1 with con-
straint propagation (Fischetti and Salvagnin 2009), hereafter
denoted as OFP2, and the reweighed version, as called in the
literature (De Santis, Lucidi, and Rinaldi 2014) and denoted
hereafter as ORFP1. For all of these versions, we inves-
tigate the effect of cuts in the performance of these algo-
rithms. OFP2 with cuts is denoted as OFP3, while ORFP1
with constraint propagation is ORFP2 and when adding cuts
too we get ORFP3. Cuts are added in the pumping phase
only while parameter « < 0.5 (Achterberg and Berthold
2007) and 6 < 0.5 (De Santis, Lucidi, and Rinaldi 2013).
For all of these versions, the parameters of the algorithms are
the same as in the literature. Particularly for the variants that
employ constraint propagation, we use our problem-specific
constraint propagation mechanism, using the ‘frac’ rounding
scheme (Fischetti and Salvagnin 2009), i.e., less fractional
variables are rounded first.

Branch & Cut algorithm

All these algorithmic components allow the development
of an exact algorithm that employees the complementary
strengths of these methods. Still, both of these problems,
ie., (3,1)AP, and (3,2)AP,, have been studied across the
literature and there exist exact approaches to tackle them.
However, a B&C algorithm, to the best of our knowledge,
does not exist for both of these problems. Before going into
the details of our approach let us describe in short these pre-
vious approaches.

Regarding the (3,1)AP,, the first exact approach is a
B&B algorithm, merely a form of implicit enumeration of all
feasible points, based on the primal-dual scheme for upper
and lower bound acquisition (Pierskalla 1968). Following
this an additional exact, primal-dual algorithm has been pro-
posed (Hansen and Kaufman 1973). Both of the above algo-
rithms share a branching strategy based on fixing single vari-
ables to zero or one. After that, different approaches came in
the front stage where an alternation of the (3, 1) AP, fitting
the application of scheduling a teaching practice is solved
exactly, using a Lagrangian relaxation and a subgradient al-
gorithm (Frieze and Yadegar 1981). An interesting approach

introduces a B&B algorithm that incorporates a Lagrangian
relaxation for which dual heuristics have been encoded to
obtain good lower bounds, facet inequalities which ‘tighten’
the relaxation and primal heuristics that obtain good upper
bounds (Balas and Saltzman 1991). Following this, the ef-
fect of clique-cuts added only at the top-node has been in-
vestigated in a B&B algorithm (Qi, Ballas, and Gwan 1994).
The latest approach (Walteros et al. 2014), focuses on the
general (k, 1) AP,, with k > 3, introducing a Branch & Price
algorithm applied to assignment problems with star costs,
i.e., a special form of costs. Note here that we do not present
a detailed literature review on this since we are focusing on
the 3-index assignment.

On the contrary, the (3,2)AP,, has not been so exten-
sively studied. The first exact algorithm is a B&B algo-
rithm (Vlach 1967). Following this, another B&B algo-
rithm has been proposed (Magos and Miliotis 1994), where
a relaxation-based heuristic and a local-improvement algo-
rithm form the upper bound procedure, a dual heuristic solv-
ing a Lagrangian relaxation of the problem obtains lower
bounds, while branching is imposed over SoS-I where vari-
ables are prioritized in accordance to their reduced costs at
each node of the search tree. Again, other approaches tackle
higher dimensions of planar assignments, e.g., k = 4 (Appa,
Magos, and Mourtos 2004), however, in this study, we do
not focus on these ones.

Our approach uses clique-cuts for the (3,1)AP,, odd-
hole cuts for the (3,2)AP,, branching on special ordered
sets and the reweighed FP heuristic with constraint propaga-
tion and cuts (ORFP3). Let us describe how we use these
components individually.

Branching rules

As described previously, the (k, s) AP, has strictly binary
variables where all constraints are equalities with a right-
hand side of one. This means that each constraint defines
a Special Ordered Set of type I (SoS-I). Hence, we per-
form SoS-I branching using the reduced costs of the initial
LP to prioritize variables. That is, variables in each set are
prioritized in increasing order with respect to their reduced
costs, while each constraint is prioritized with respect to the
minimum integer infeasibility (i.e., CPLEX default SoS-I
branching). By branching over SoS-I, we take advantage
of the (k, s) AP, structure to reduce the depth of the search
tree to a maximum O(nlogn) (Balas and Saltzman 1991).
As an alternative prioritization criterion, regarding the vari-
ables, we have tested using the reduced costs of the variables
at each node, while for constraint prioritization we used the
sum of the reduced costs at each constraint. However this
did not improve the computational results.
The node selection criterion is “best bound”.

Cut addition

In order to design an efficient B&C scheme, it is important
not only to have effective separation algorithms, but also to
determine the frequency of calling them. For example, it
is common to add cuts at several, but not all, nodes usu-
ally high in the search tree (Lysgaard, Letchford, and Eglese
2004; Dumitrescu et al. 2010). Therefore, we add clique cuts



for the (3,1) AP, and odd-hole cuts for the (3,2) AP, only
at nodes which are at the 5% of the maximum tree depth,
which is known as described previously. Our computational
experience has shown that a light scheme of adding cuts in
both cases, for one round and up to n®/9 cuts per round,
provides the best possible results. In this way we perform
light bursts of cuts high in the search tree, which tighten the
relaxation and reduce the search space.

Heuristic

The computational results presented below show that all
variants of FP are expensive in terms of time, however when
compared to each other, the variants that employ cuts with
constraint propagation provide on average the best upper
bounds. This implies that, indeed OFP3 and ORFP3 can
prune the search tree, but calling any of these heuristics
too many times in the B&C algorithm would be a burden
in terms of solution time. In this study, we present results
for the ORFP3 version called only once at the top-node of
the tree. After that, we employ only the default heuristic of
CPLEX, to further improve the upper bound.

Computational results

All variants of FP and the B&C algorithms are coded in
ANSI C, using the IBM-ILOG CPLEX 12.5 callable library.
Our experiments are conducted under Linux Ubuntu 14.04,
on a quad-core machine (3.6GHz CPU speed, 16GB RAM).
All FP variants are allowed up to 2000 pumping cycles, ex-
cept when employed into a B&C algorithm where we set the
maximum number of pumping cycles to 20. To investigate
the effect of cuts on the performance of the FP variants we
calculate the (average) integrality gap of all known FP vari-
ants, defined as IG = (z* — zpp)/z1p, where z* is the
value of the solution found by the FP variant and 2z p the
value of the LP-relaxation. We also discuss issues related to
the required CPU time. Additionally, we take into consid-
eration the success ratio (if less than 1), i.e., the percentage
of runs in which a solution is found. Finally we show the
average number of pumping cycles needed by each variant
to find a feasible solution.

Regarding the exact algorithms, our preliminary com-
putational experience showed that for large instances, i.e.,
n > 50 for the axial and n > 20 for the planar case, CPLEX
runs out of memory way before reaching the optimal so-
lution. For this reason and in order to have a sound basis
of comparison, we set a time limit of 3 hours on all ex-
act schemes and calculate the integrality gap that is reached
within this time-frame. To test the effect of each algorith-
mic component, i.e., SoS-I branching, cuts and ORFP3, we
show results of 3 exact algorithms compared to the CPLEX
default one, where each component is employed hierarchi-
cally. That is, SoS-I scheme uses only the respective branch-
ing strategy, SoSCuts uses SoS-I branching and cuts, and
SoSCutsORFP3 employees all three components. For these
3 schemes all general-purpose CPLEX cuts are turned off.
Finally, we turn off the CPLEX pre-solver, we use explicitly
the single-threaded mode, and keep the CPLEX heuristic on
default settings on all exact schemes. Let us describe the
results of each problem individually.

3-index axial assignment

For the (3,1)AP, we focus on two classes of non-
polynomial instances found in the literature, which we de-
note as bsx (Balas and Saltzman 1991) and gpx (Grundel
and Pardalos 2005), with x being the size of the instance,
i.e., the value of n. Additionally, we create a new class of
instances, denoted as axialx, whose coefficients are integer
numbers sampled from U[1, n*], on which we test our algo-
rithms as well. For all of these classes, we generate 5 dif-
ferent objective functions with n € {25, 54,66, 80}. There-
fore, all results shown are averages over 5 random instantia-
tions per instance.

Table 1 shows the results of the FP variants when tested on
these instances. In general, OFP1 is the fastest variant, but
sometimes fails to find a feasible solution. When constraint
propagation and cuts are applied to it (OFP3), on average
the quality of solution gets better while feasibility is reached
on all instances and the number of pumping cycles is also
reduced. However, as expected, this comes at the expense
of time. ORFP1 is comparable to OFP1, however constraint
propagation and cuts (ORFP3) indeed improve the solution
quality and reduce the number of pumping cycles in the ma-
jority of the instances, but the computational time remains
comparable to ORFP1. Note here that, on average, ORFP3
provides the best solution quality followed by OFP3. There-
fore, cut addition in each pumping cycle is clearly beneficial
although expensive.

Table 2 shows the results of the exact algorithms. When
looking at the performance of CPLEX default B&C, one can
easily notice the differentiation of number in nodes and solu-
tion time between different classes of instances. When look-
ing at the literature instances,i.e., bsx and gpz, it is obvious
that they are solved significantly faster compared to axialz
instances. This is more evident in instances with n > 25.
A recent study on heuristic approaches for the (k,1)AP,
(Karapetyan and Gutin 2011), highlights that when solving
a randomly generated instance with cost coefficients sam-
pled in a range [a, ], as n increases, the problem solution
approaches the bound an, i.e., the minimal possible assign-
ment weight. Given that all literature instances are generated
randomly within a constant range of cost coefficients, indeed
we came across this finding when solving these instances.
However, in our instances (axialx), the range widens as n
increases, making this phenomenon rarely evident and these
instances ‘harder’ to solve as proven by the performance of
the CPLEX B&C algorithm.

When looking on the bsz and gpx instances (Table 2), our
exact algorithms perform comparably to CPLEX, in terms
of nodes. However, this does not apply in terms of time,
that is our schemes are time-wise more expensive due to
the computational time required by ORPF3. This means
that CPLEX suffices for these instances, mostly because of
the problem particularity described above. However, when
looking on the axialx instances, we improve on CPLEX in
terms of nodes, time and integrality gap, which indicates
that our B&C algorithms indeed prune the search tree more
effectively. When comparing our B&C algorithms with
each other on the axialr instances it seems that sometimes
ORFP3 reduces the number of nodes but increases the time



to optimality. However, this burden, in terms of time, seems
to pay off for larger instances (n = 66 and n = 80) given
the integrality gap that is reached within the time-frame of 3
hours. It is expected that this becomes more significant for
even larger instance that are currently examined.

3-index planar assignment

For the (3,2)AP, we focus on a single class of literature
instances (Magos and Mourtos 2013) where the cost coef-
ficients are integer numbers sampled from U[1,n*]. For
this class, we generate 5 different objective functions with
n € {10,20,30,40}. Therefore, all results shown are av-
erages over 5 random instantiations per instance, while the
instances are identified by the value of n.

Table 3 shows the results of the FP variants when tested
on the planar instances. Again, OFP1 requires less time than
the other variants, however it provides the poorest quality of
solutions on average. When constraint propagation and cuts
are employed (OFP3) the number of pumping cycles is re-
duced and the solution quality improved. Regarding ORFP1,
it provides solutions of better quality than OFP1 in a com-
parable amount of time. When constraint propagation and
cuts are employed (ORFP3) the number of pumping cycles
is reduced and the solution quality is improved. However,
time-wise ORFP3 is far more expensive. This is obviously
due to the cut addition; recall that the separation of odd-hole
cuts is O(n®).

Table 4 shows the results of the exact algorithms for the
planar instances. For small instances (n = 10), all of our
algorithmic schemes seem to perform better than CPLEX in
terms of nodes and time. Particularly, the SoSCutsORFP3
scheme requires more time, which is reasonable given the
time required by ORFP3. The effect though of ORFP3 is
far more evident on larger instances (n > 20). The num-
ber of nodes visited by the schemes that employ cuts is
much smaller due to the time required by the separation al-
gorithm, i.e., CPLEX and SoS-I scheme spend less time at
each node. However the integrality gap reached by SoS-
CutsORFP3 scheme is the minimum possible, which indi-
cates that indeed all these components prune significantly
the search tree.

Concluding Remarks

In this study we present a solver for the (k, s) AP, that inte-
grates constraint propagation, problem-specific cuts, SoS-I
branching and Feasibility Pump enhanced by cut addition
in each pumping cycle. Our solver reduces both the time
and the number of nodes for larger instances compared to
CPLEX. This effect is far more evident in the (3,2)AP,
where the number of constraints increases quadratically
compared to the (3,1)AP,. Further experimentation may
offer deeper insights on both the performance of such a
solver (or a partially modified one) and on our ability to
solve exactly larger-scale instances for different values of
k and s.
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Table 1: FP variants - (3, 1) AP,,: Average integrality gap, cycles, time

Instance OFP1 OFP2 OFP3 ORFP1 ORFP2 ORFP3
axial25 | Gap 257.09 551.78 181.08 270.19 363.25 154.92
Cycles 7 12 3 21 9 5
Time 0.17 2.02 0.9 0.46 (0.8) 1.56 1.25
axial54 | Gap 517.22 729.58 985.86 520.72 1062.69 485.25
Cycles 11 7 4 8 11 4
Time 12 (0.6) 65.06 85.31 10.42 (0.8) 95.56 46.26
axial66 | Gap 588.91 1233.59 1165.46 814.86 634.44 477.92
Cycles 5 14 4 7 4 4
Time 12.3 (0.8) 287.51 251.12 23.86 122.41 122.54
axial80 | Gap 647.02 1364.05 1392.16 818.07 1290.83 747.96
Cycles 5 7 4 8 10 4
Time 31.68 466.15 581.06 | 49.38 (0.8) 592.23 310.14
bs25 Gap 216.54 190.73 92.73 69.15 180.61 40.07
Cycles 50 7 3 3 20 3
Time 0.96 (0.8) 1.34 0.89 0.1(0.4) 297 0.9
bs54 Gap 61.57 38.52 85.18 28.71 81.11 20.37
Cycles 4 4 4 4 10 4
Time 5.33(0.8) 42.7 63.93 5.7 (0.8) 81.81 48.61
bs66 Gap 63.25 70.3 47.88 35.35 35.15 25.76
Cycles 11 8 4 6 7 4
Time 22.96 (0.8) 187.32 185.77 | 16.83 (0.6) 178.88 133.58
bs80 Gap 53.75 48 .0 28.25 34.06 45.5 19.25
Cycles 10 5 4 10 9 3
Time 38.07(0.4) 366.77 498.53 | 48.88 (0.8) 535.71 260.34
gp25 Gap 0.87 2.36 2.32 0.72 4.26 0.71
Cycles 1 2 2 1 31 1
Time 0.1 (0.8) 0.62 0.63 0.1 4.43 0.52
gpS4 Gap 0.88 1.85 1.1 0.88 0.67 0.42
Cycles 3 3 1 2 7 1
Time 342 25.33 20.04 297 42.18 14.68
2p66 Gap 0.63 0.63 0.78 0.63 1.34 0.78
Cycles 1 1 1 2 6 2
Time 8.55(0.8) | 61.26(0.8) | 89.38 | 11.36(0.8) | 144.34(0.8) | 68.23
gp80 Gap 1.29 1.2 1.02 0.95 1.22 0.68
Cycles 29 3 2 14 7.6 32
Time 120.06(0.4) 261.38 302.21 | 74.96 (0.8) 440.67 236.08




Table 2: Exact algorithms - (3, 1) AP,: Average number of nodes, time, integrality gap

Instance CPLEX SoS-1I SoSCuts | SoSCutsORFP3
axial25 | Nodes 627 565.4 429 520.4
Time 1.21 1.12 0.98 1.13
Gap 0 0 0 0
axial54 | Nodes | 368075 | 335959 | 354046 313483
Time | 4608.23 | 4073.78 | 5126.36 4283.09
Gap 0 0 0 0
axial66 | Nodes | 445512 | 400366 | 359688 366384
Time 3h 3h 3h 3h
Gap 34.24 38.2 29.97 31.79
axial80 | Nodes | 179122 | 180121 | 167720 173515
Time 3h 3h 3h 3h
Gap 133.07 92.33 106.53 74.02
bs25 Nodes 399 247 205 187
Time 0.89 0.65 0.67 40.69
Gap 0 0 0 0
bs54 Nodes 64 99 80 72.8
Time 4.93 7.99 8.51 27.99
Gap 0 0 0 0
bs66 Nodes 0 0 0 0
Time 7.22 12.26 14.77 192.14
Gap 0 0 0 0
bs80 Nodes 7270 586 465 446
Time 686.67 72.28 59.16 57.79
Gap 0 0 0 0
gp25 Nodes 0 0 0 0
Time 0.39 0.2 0.19 0.67
Gap 0 0 0 0
gpS4 Nodes 0 0 0 0
Time 9.31 3.92 4.61 18.08
Gap 0 0 0 0
gp66 Nodes 0 0 0 0
Time 20.82 14.05 12.41 79.48
Gap 0 0 0 0
gp80 Nodes 0 0 0 0
Time 46.72 33.19 30.63 704.52
Gap 0 0 0 0

Table 3: FP variants - (3,2) AP,,: Average integrality gap, cycles, time

Instance OFP1 | OFP2 OFP3 | ORFP1 | ORFP2 | ORFP3
n =10 | Gap 8.89 8.51 8.00 8.85 8.21 7.77
Cycles 3 3 2 5 4 4
Time 0.02 0.02 0.07 0.02 0.02 0.12
n =20 | Gap 27.66 | 24.99 24.72 29.78 21.8 20.54
Cycles 6 5 4 18 7 6
Time 6.21 5.21 14.08 13.07 8.07 22.46
n =30 | Gap 42.69 | 40.61 37.35 32.87 34.11 33.48
Cycles 9 6 6 10 8 8
Time 35.18 22.8 241.57 | 44.25 3542 374.09
n =40 | Gap 55.95 | 54.86 52.87 48.94 43.65 47.09
Cycles 11 8 8 13 9 10
Time 210.92 | 144.59 | 1869.09 | 298.04 | 211.74 | 2701.91




Table 4: Exact algorithms - (3,2) AP,: Average number of nodes, time, integrality gap

Instance CPLEX | SoS-I | SoSCuts | SoSCutsORFP3

n =10 | Nodes 813 695 597 624
Time 2.9 1.66 1.6 1.92
Gap 0 0 0 0

n =20 | Nodes | 403464 | 350702 | 300106 296380
Time 3h 3h 3h 3h
Gap 24.47 27.63 29.25 17.07

n =230 | Nodes | 42738 37188 18029 18030
Time 3h 3h 3h 3h
Gap 89.36 80.39 87.51 26.20

n =40 | Nodes | 11986 10266 7927 5927
Time 3h 3h 3h 3h
Gap 159.68 | 137.33 160.38 46.92
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