Generating models of a matched formula with a polynomial delay

Petr Savicky
Institute of Computer Science,
Academy of Sciences of Czech Republic,
Pod Vodarenskou Vézi 2,
182 07 Praha 8, Czech Republic
savicky @cs.cas.cz

Abstract

A matched formula is a CNF formula, such that the sys-
tem of the sets of the variables, which appear in indi-
vidual clauses, has a system of distinct representatives.
Such a formula is always satisfiable. Matched formulas
are used, for example, in the area of parametrized com-
plexity. We prove that the problem of counting the num-
ber of the models (satisfying assignments) of a matched
formula is #P-complete. On the other hand, we define
a class of formulas generalizing the matched formulas
and prove that for a formula in this class, one can choose
in polynomial time a variable suitable for splitting the
tree for the search of the models of the formula. As a
consequence, the models of a formula from this class,
in particular of any matched formula, can be generated
sequentially with a delay polynomial in the size of the
input. On the other hand, we prove that this task cannot
be performed efficiently for the linearly satisfiable for-
mulas, which is a generalization of matched formulas
containing the class considered above.

Introduction

In this paper we consider the problem of counting the
models (satisfying assignments) and generating subsets of
the models of a given formula in conjunctive normal form
(CNF). It is well known that a problem of counting the mod-
els of a general CNF is #P-complete (Sipser 2006). The
problem of generating the models of a general CNF for-
mula is clearly also hard, because checking whether there
is at least one satisfying assignment of the formula, the SAT
problem, is NP-complete (Garey and Johnson 1979). That is
why we consider subclasses of formulae for which the satis-
fiability problem can be solved in polynomial time.

In particular we consider the class of matched formulas
introduced in (Franco and Van Gelder 2003). Given a CNF
formula ¢ we consider its incidence graph I(p) defined as
follows. I(¢) is a bipartite graph with one partity consisting
of clauses of ¢ and the other partity containing the variables
of ¢. An edge {z,C'} for a variable = and a clause C is in
I(ip) if x or -z appears in C'. It was observed in (Aharoni
and Linial 1986; Tovey 1984) that if I(¢) admits a match-
ing (i.e. a set of pairwise disjoint edges) of size m (where
m is the number of clauses in ), then ¢ is satisfiable. Later
in (Franco and Van Gelder 2003) the formulas satisfying this
condition were called matched formulas. Since a matching

Petr Kucera
Department of Theoretical Computer Science
and Mathematical Logic,

Faculty of Mathematics and Physics,
Charles University,
Malostranské nam. 25,

118 00 Praha 1, Czech Republic
kucerap @ktiml.mff.cuni.cz

of maximum size in a bipartite graph can be found in poly-
nomial time (see e.g. (Lovdsz and Plummer 1986)), one can
check efficiently whether a given formula is matched.

Given a general formula ¢ we can measure how far it is
from being matched by considering its maximum deficiency
0*(¢), the number of clauses which remain unmatched in a
maximum matching of I(y). A formula ¢ is thus matched
iff 5* () = 0. A weaker notion of deficiency d(¢) = m—mn,
where m is the number of clauses and n the number of the
variables in ¢, is also often being considered.

Matched formulas play a significant role in the theory of
satisfiability solving. Since their introduction, matched for-
mulas were considered as a base class in parameterized algo-
rithms for satisfiability, see e.g. (Flum and Grohe 2006) for
an overview of parameterized algorithms theory. In particu-
lar, the authors of (Fleischner, Kullmann, and Szeider 2002)
show that satisfiability of the formulas whose maximum de-
ficiency is bounded by a constant can be decided in polyno-
mial time. This result was later improved in (Szeider 2003)
to an algorithm for satisfiability parameterized with max-
imum deficiency of a formula. Parameterization based on
backdoor sets with respect to matched formulas were con-
sidered in (Szeider 2007).

Several generalizations of matched formulas were con-
sidered in the literature, too. In (Kullmann 2000), matched
formulas were generalized into the class of linearly satisfi-
able formulas. Autarkies based on matchings were studied
in (Kullmann 2003). Another generalization was considered
in (Szeider 2005) as classes of bi-clique satisfiable and var-
satisfiable formulas. Unfortunately, for both bi-clique and
var-satisfiable formulas it is hard to check if a formula falls
into one of these classes (Szeider 2005).

Since all matched formulas are trivially satisfiable, we ask
a stronger question: How hard is it to count or enumerate
the models of a matched formula? We prove that counting
the models of a matched formula is a #P-complete problem,
and turn our attention to generating models of a matched
formula. Since the number of the models can be large, we
consider the efficiency with respect to the input and output
size.

More specifically, one can consider two variants of the
algorithm. In one of them, the input of the algorithm is a
formula and a natural number k. The output is a set of k
different models of the formula, if such models exist, or all



models of the formula, if their number is less than k. Such an
algorithm is considered polynomially output-efficient, if its
running time is at most k ||||©(Y), where ||| is the length
of the input formula . For simplicity, we present our al-
gorithms in another setting, when the algorithm receives as
input a formula and generates a sequence of all its mod-
els. The time needed for generating the first model and the
time between generating any two consecutive models in the
sequence is polynomial in the length of the formula. This
type of complexity bound will be called a polynomial delay
in this paper, although the notion of a polynomial delay is
sometimes understood in a weaker sense.

The main result of the paper is an algorithm, which gener-
ates models of a matched formula with a polynomial delay.
The algorithm constructs a splitting tree, whose nodes corre-
spond to either a matched or an unsatisfiable formula. How-
ever, in some cases, this strategy is not sufficient, since some
nodes of the tree cannot be split in this way. We prove that
such a node corresponds to a formula, which can be satisfied
by iterated elimination of pure literals. Formulas with this
property will be called pure literal satisfiable. These formu-
las were studied in (Kullmann 2000) as a subclass of linearly
satisfiable formulas. If a node with a pure literal satisfiable
formula is reached, the algorithm switches to a simpler strat-
egy. We prove that the models of a pure literal satisfiable for-
mula can be generated with a delay linear in the length of the
formula. On the other hand, the #SAT problem for pure lit-
eral satisfiable formulas is #P-complete, because this prob-
lem is #P-complete for monotone 2CNFs (Valiant 1979a;
1979b), which are pure literal satisfiable.

Several classes generalizing matched formulas were con-
sidered in the literature such as biclique satisfiable and var-
satisfiable formulas (Szeider 2005) and linearly satisfiable
formulas (Kullmann 2000). We show in this paper that our
result does not transfer to the class of linearly satisfiable for-
mulas by demonstrating that it is not possible to generate
models of a linearly satisfiable formula with a polynomial
delay unless P=NP.

Note that this is an extended abstract and most of the
proofs are therefore omitted.

Definitions

In this section we give the necessary definitions and recall
the results we use in this paper.

Boolean functions

A Boolean function of n variables is a mapping f

{0,1}™ — {0,1}. A literal is either a variable, called posi-
tive literal, or its negation, called negative literal. The nega-
tion of the variable x will be denoted —x or . A clause is
a disjunction of a set of literals, which contains at most one
literal for each variable. Formula ¢ is in conjunctive nor-
mal form (CNF) or, equivalently, ¢ is a CNF formula, if it
is a conjuction of clauses. We often treat a clause as a set
of its literals and a CNF formula as a set of its clauses. It is
a well known fact that every Boolean function can be rep-
resented by a CNF formula (see e.g. (Genesereth and Nils-
son 1987)). The size of a formula ¢ is the number of the

clauses in ¢ and will be denoted as |¢|. The length of a for-
mula ¢ is the total number of occurrences of literals in ¢,
i.e. the sum of the sizes of the clauses in ¢, and will be de-
noted as ||¢||. Given a variable x and a value @ € {0, 1},
plx = a] denotes a formula originating from ¢ by substi-
tuting = with value a and the obvious simplifications con-
sisting in removing falsified literals and satisfied clauses.
We extend this notation to negative literals as well by set-

ting [T = a|] = @[z = @]. The formula obtained from ¢
by assigning the values a1, . ..,a; € {0,1} to the variables
Z1,...,2k isdenoted as p[z1 = a1,22 = ag, ..., Tk = agl.

We say that a literal [ is pure in a CNF formula, if it occurs
in the formula and the negated literal —/ does not. A literal is
irrelevant in a formula, if neither the literal nor its negation
occurs in the formula. A variable is pure, if it appears only
positively, or only negatively in ¢, i.e. it appears in a literal,
which is pure in ¢.

Let ¢ be a formula defining a Boolean function f on n
variables. An assignment of values v € {0,1}" is a model
of ¢ (also a satisfying assignment, or a true point of ), if it
satisfies f,i.e.if f(v) = 1. The set of models of ¢ is denoted
as T'(y). The models in T'() are defined on the variables,
which have an occurrence in ¢. The set of the variables of
the function defined by a formula can be larger, however,
we do not introduce a special notation for this more general
case. For algorithmic purposes, this is also not necessary,
since adding an irrelevant variable to a formula changes the
set of the models by adding this variable with both possible
values to each element of the original set of models.

A partial assignment assigns values only to a subset of
the variables. For a formula of the variables x1, ..., x,, it
can be represented as a ternary vector v € {0, 1, x}", where
v; = * denotes the fact that x; is not assigned a value by v.

Note that an empty clause does not admit a satisfying as-
signment and an empty CNF is satisfied by any assignment.

Matched formulas

In this paper we use standard graph terminology, see
e.g. (Bollobas 1998). Given an undirected graph G =
(V,E), a subset of edges M C E is a matching in G
if the edges in M are pairwise disjoint. A bipartite graph
G = (A, B, FE) is an undirected graph with disjoint sets
of vertices A and B, and the set of edges F satisfying
E C A x B. For a set W of vertices of G, let T'(W) de-
note the neighbourhood of W in G, i.e. the set of all vertices
adjacent to some element of W. We shall use the following
well-known result on matchings in bipartite graphs:

Theorem 1 (Hall’s Theorem). Let G = (A, B, E) be a bi-
partite graph. A matching M of size |M| = | A| exists if and
only if for every subset S of A we have that |S| < |I'(S)].

Let p = C1 A ... AN C,, be a CNF formula on n vari-
ables X = {x1,...,x,}. We associate a bipartite graph
I(p) = (p, X, E) with ¢ (also called the incidence graph
of (), where the vertices correspond to clauses in ¢ and
the variables X. A clause Cj is connected to a variable z;
(i.e. {Cj,z;} € E)if C; contains z; or z;. A CNF for-
mula ¢ is matched if I(p) has a matching of size m, i.e. if
there is a matching which pairs each clause with a unique



variable, this is called perfect matching of I(). Note, that a
matched CNF is trivially satisfiable, since each clause can be
satisfied by the literal containing the variable matched to the
given clause. A variable which is matched to some clause in
a given matching M is called matched in M, it is free in M
otherwise.

Generating models with a polynomial delay

The main goal of this paper is to describe an algorithm which
given a matched formula ¢ generates the set 7'(¢) of models
of ¢ with a polynomial delay. Let us state more formally
what we require of such an algorithm.

We say that an algorithm generates the models of a
Boolean formula ¢ with a polynomial delay, if there is a
polynomial p, such that the algorithm given a formula ¢ as
an input satisfies the following properties.

1. Tt works in steps, each of which takes time O(p(||¢]|)).

2. In each step, it either finds a model of ¢ different from
the models obtained in the previous steps (in particular,
any model in the first step) or determines that that there is
no such model, so the previous steps already found all the
models of .

If an algorithm with the properties above exists, it fol-
lows that we can construct the set T'(¢) of all models in
time O((|T(¢)| + 1) - p(|l¢l])), which means that the al-
gorithm is polynomial with respect to the size of the input
and output. Note that since T'() may be of exponential size
with respect to |||, efficiency with respect to the size of the
input and output is the best we can hope for when construct-
ing T'(). Note also that often in the literature algorithms
working with polynomial delay are allowed to spend time
O(p(IT'],|l¢ll)) to generate a new model, where 7" is the
set of models found in the previous steps. Our definition is
more restrictive than this.

Efficient splitting tree algorithm

The idea of the algorithm is to construct a decision tree for
the function represented by a given satisfiable CNF, such
that every subtree larger than a single leaf contains a 1-
leaf. The depth of the tree is at most the number of the
variables. If this tree is searched in a DFS order, then the
time needed in an arbitrary moment to reach a 1-leaf is at
most n times the time needed to split a node. In the follow-
ing, we show that for some classes of formulas including the
matched formulas, it is possible to find a splitting procedure,
which yields a tree as described above.

A decision tree for a Boolean function f is a labeled bi-
nary tree, where each inner node is labeled with a variable,
while leaves and edges have labels 0 or 1. A decision tree
computes f(z) for a given assignment z by a process, which
starts at the root and in each visited node follows the edge
labeled by the value of the variable, which is the label of the
node. The output is the label of the leaf reached by this pro-
cess. If a computation path tests a variable, which was tested
in the previous part of the path, then this test is redundant.
We consider only trees without such redundant tests.

A decision tree representing the same function as a given
CNF formula ¢ can be constructed top down as follows. The

root of the tree is assigned to ¢. For each non-leaf node of
the tree assigned to a formula v, we choose an arbitrary split
variable x, which has an occurrence in 1/, and assign the re-
stricted formulas [z = 0] and ¥ [z = 1] to the successors.
A node assigned to an empty formula becomes a 1-leaf and a
node assigned to a formula, which contains an empty clause,
becomes a 0-leaf. The resulting decision tree represents the
function given by ¢, although it can be too large for practi-
cal purposes. Each path from the root to an inner node u of
the tree corresponds to a partial assignment which changes
 to a formula representing the function computed by the
subtree, whose root is u. The depth of a tree for a function
of n variables is at most n.

Each leaf node labeled with 1 represents a set of mod-
els of , more precisely, a leaf in depth d represents 2"~ ¢
models of ¢. Moreover, different leaves of the tree represent
disjoint sets of models. Given a decision tree for the function
represented by ¢ we can, by traversing it, generate all mod-
els of ¢ in time proportional to its size. This process leads to
a large delay between generating successive models, if the
tree contains large subtrees with only 0-leaves. The follow-
ing condition on a class of formulas describes a situation,
when this can be avoided.

Definition 2. Let U be a class of formulas, let ¢ € U and let
z be a variable with an occurrence in . We say that x is a
splitting variable for ¢ relative to U, if for every a € {0,1},
such that p[z = a] is satisfiable, we have p[x = a] € U.

A class of formulas U has the splitting property, if ev-
ery formula in U containing a variable contains a splitting
variable relative to U.

Definition 3. Let U be a class of formulas having the split-
ting property. The splitting complexity of a formula ¢ € U,
which contains a variable, is the time needed to find some
of the splitting variables x for ¢ relative to U and the re-
sults of the satisfiability tests for the formulas @[z = 0]
and @[z = 1]. We say that the class U has a splitting com-
plexity c(p) if every nontrivial formula ¢ € U and every
nontrivial formula in U obtained from ¢ by a partial as-
signment has splitting complexity at most ¢(¢). If moreover
c(p) < p(||¢||) where p is a polynomial, then we say that U
has a polynomial splitting complexity.

If ¢ € U, then its splitting complexity is also an upper
bound on the time of a satisfiability test for ¢ itself, since
 is satisfiable, if and only if at least one of the formulas
oz = 0] and @[z = 1], where x is a splitting variable, is
satisfiable.

Theorem 4. If a class of formulas U has the splitting prop-
erty with the splitting complexity c(p), where c(p) > ||¢||
for each formula ¢ € U, then the models of a formula ¢ € U
with n variables can be generated with a delay O(n - ¢(p)).

Remark 5. If ¢ contains a unit clause and U is closed un-
der the unit propagation, then a variable x contained in a
unit clause is a splitting variable, which can be identified ef-
ficiently. The reason is that if ¢ is known to be satisfiable,
then one of the formulas [z = a] contains an empty clause
and, hence, the other is satisfiable.

Remark 6. Any class U satisfying that



1. the satisfiability of formulas in U can be tested in polyno-
mial time, and

2. U is closed under partial assignments

has a polynomial splitting complexity. Indeed, in this case
any variable in a formula ¢ from U is a splitting variable and
the satisfiability tests for the corresponding restrictions can
be obtained in polynomial time. Examples of such classes
are Horn formulas, SLUR formulas, 2CNFs, q-Horn formu-
las etc. Hence, as an immediate corollary of Theorem 4, it is
possible to generate the models of formulas in these classes
with a polynomial delay.

The main result of this paper is that a slight generaliza-
tion of matched formulas also has polynomial splitting com-
plexity although the class of matched formulas is not closed
under partial assignments.

Pure literal satisfiable formulas

Before considering matched formulas, let us make a small
detour to the class of formulas which are satisfiable by it-
erated elimination of pure literals, which we call pure lit-
eral satisfiable. These formulas have already been consid-
ered in (Kullmann 2000) as a special case of linearly satisfi-
able formulas.

A set of literals is called consistent, if it does not contain
contradictory literals. If [ is a literal, let assign(l) be the as-
signment to the variable contained in [, which satisfies /. For
a consistent set or sequence of literals L, let assign(L) be the
partial assignment of the variables satisfying the literals in
L. For a formula ¢, ¢[L] is an abbreviation for p[assign(L)].

Definition 7. A pure literal sequence for a formula ¢ is a
consistent sequence of literals ({1, ..., ), such that for ev-
ery i = 1,...,k, the literal [; is either pure or irrelevant in
the formula ¢[l1,...,l;—1]. In particular, [; is pure or irrel-
evant in . A pure literal sequence is called strict, if each of
the literals I; is pure in p[l1, ..., l;—1].

If L is a pure literal sequence for ¢, the formula ¢[L]
will be called the reduced formula corresponding to ¢ and
L. If ¢[L] does not contain a pure literal, L will be called a
maximal pure literal sequence for .

Definition 8. A formula ¢ is pure literal satisfiable, if there
is a pure literal sequence L for ¢, such that the reduced for-
mula [L] is empty or, equivalently, assign(L) is a satisfy-
ing assignment of (.

An autarky for a formula ¢ is a partial assignment v of
the variables, such that every clause is either satisfied or un-
changed by v. For more on autarkies see e.g. (Kullmann
2000). Note that every initial segment of a pure literal se-
quence defines an assignment to the variables, which is an
autarky. Moreover, one can easily verify that this property
characterizes pure literal sequences.

Let us note that pure literal satisfiable formulas are not
closed under partial assignments. Consider a formula 1),
which is either unsatisfiable or satisfiable and does not con-
tain a pure literal. Let ¢ be the formula obtained from ¢ by
adding a new variable z as a positive literal to every clause.
Formula ¢ is pure literal satisfiable, but p[x = 0] = 1 is

not pure literal satisfiable. It follows that pure literal satisfi-
able formulas do not satisfy the second property required in
Remark 6 and we have to put more effort into showing that
pure literal satisfiable formulas have the splitting property
and a polynomial splitting complexity.

For every CNF formula, it may be tested in polynomial
time, whether it is pure literal satisfiable. In order to find
a pure literal sequence witnessing this fact, the procedure
FindPLS in Figure 1 uses a greedy approach, which at each
step chooses and satisfies any pure literal in the current for-
mula. This approach is meaningful, since if a literal is pure
at some stage of the procedure, it either remains pure or be-
comes irrelevant in the following stages. The pure literal
sequence obtained by the procedure depends on the non-
deterministic choices made by the procedure, however, by
Lemma 9, the resulting reduced formula is uniquely deter-
mined by the input.

Procedure FindPLS

Input: A CNF formula .

Output: A maximal strict pure literal sequence L for ¢ and
the corresponding reduced formula.

Definition: For a formula ¢, let Pure(yp) denote the set of
the literals, which are pure in it.

initialize v with the input formula ¢
initialize L with an empty list
while Pure(t)) is not empty
choose any literal [ from Pure())
add [ to L and apply assign(l) to ¢
Output the list L and the formula v

Figure 1: Constructing pure literal sequence

Lemma 9. Let ¢ be a CNF formula and let L be a pure
literal sequence obtained by FindPLS for .

1. The formula ¢[L] is uniquely determined by .
2. The formula ¢ is pure literal satisfiable, if and only if p[L]
is empty.

Since the running time of FindPLS procedure is polyno-
mial in the length of the input formula, a maximal pure lit-
eral sequence for a formula can be constructed in polynomial
time. The complexity of constructing a maximal pure literal
sequence for a formula ¢ is, in fact, O(]|¢||) by Lemma 23.

Lemma 10. Let L = (I3, ...,l,) be a pure literal sequence
for a formula @, which contains a literal for each variable
of p. Fori = 1,...,n, denote by x; the variable contained
in l;. If x; is the variable with the largest index v among
the variables, which have an occurence in @, then x; is a
splitting variable for o and each of the formulas ¢[x; = 0]
and @|x; = 1] is satisfiable, if and only if it does not contain
an empty clause.

The following lemma is sufficient for this and the next
section, however, the splitting complexity is, in fact, O(||||)
by Theorem 24.

Lemma 11. The class of pure literal satisfiable formulas
has a polynomial splitting complexity.



Proof. If ¢ is pure literal satisfiable, then a pure literal se-
quence, which satisfies it, can be obtained by FindPLS in
polynomial time. If the sequence does not contain literals
for all variables, it is extended in polynomial time by ap-
pending arbitrary literals for the missing variables to obtain
a pure literal sequence satisfying the assumption of Lemma
10. Then, this lemma implies a method to select a splitting
variable and obtain the results of the satisfiability test for the
corresponding restrictions in polynomial time. O

If a pure literal sequence satisfies the assumption of
Lemma 10 for a formula ¢, then the same sequence can be
used to find a splitting variable for all formulas in a splitting
tree for . Using this, the models of a pure literal satisfi-
able formula can be generated with a delay smaller than the
general bound from Theorem 4, see Corollary 24.

Remark 12. The sign of a literal for a given variable, which
occurs in a strict pure literal sequence, is not uniquely de-
termined. Each of the variables y; and y, can occur both
positively and negatively in a strict pure literal sequence for
the formula

(Il \/yl)/\(mg \/ﬁ)/\(xg\/yg)/\(:u V%)A (y1 \/yg).

For example, (2, y1,23,72) and (z4,y2,x1,71) are strict
pure literal sequences for this formula.

Matched formulas

In this section we concentrate on matched formulas. Let us
start with showing that the problem of determining the num-
ber of models of a matched formula ¢, i.e. the size |T'(¢)|,
is as hard as a general #SAT problem.

Theorem 13. The problem of determining |T(p)| given a
matched formula o is #P-complete.

Our goal is to show that we can generate the models of a
matched formula with a polynomial delay. Theorem 4 can-
not be used for this directly, since the class of the matched
formulas does not have the splitting property as can be seen
from the following example. Consider the formula

(.1'1 \Y 1‘2) AN (Cll‘l V .’L‘3) A\ (332 V .173) .

This formula is matched, but it has no splitting variable. In-
deed, setting z; to O leads to a satisfiable, yet not matched
formula (x2)(x3)(z2 V x3) and by symmetry this is true for
variables xo and x3 as well. In order to achieve our objec-
tive, we have to consider a richer class of formulas. The class
we consider generalizes matched and pure literal satisfiable
formulas as follows. Note that an empty formula is matched,
since it corresponds to an empty graph and we can formally
assume that an empty graph possesses the required match-

ing.
Definition 14. A formula ¢ is called pure literal matched,

if the reduced formula obtained by FindPLS procedure for
 is matched.

Elimination of a pure literal preserves the property of be-
ing matched, since a pure literal is an autarky. Hence, a
matched formula is pure literal matched. Clearly, every pure

literal satisfiable formula is pure literal matched, since its
reduced formula is empty and, hence, matched.

The basic idea of an efficient splitting algorithm for the
matched formulas is presented in the following theorem. The
splitting complexity of the pure literal matched formulas can
be bounded as O(n? - ||p||) by Theorem 26.

Theorem 15. The class of pure literal matched formulas has
the splitting property with a polynomial splitting complexity.

In order to prove Theorem 15, we have to show several
statements concernig the structure of a matched formula. If
V' is a set of variables, we say that a clause is restricted to
V, if it contains only literals with variables from V.

Definition 16. Let V' be a subset of the variables of a
matched formula . The set V' will be called a critical block,
if the number of clauses of ¢, which are restricted to V, is
equal to |V|. Formally, if V' is empty, it is also a critical
block.

Note that if ¢ is a matched formula, V' is a subset of its
variables, and C is the set of the clauses in ( restricted to V,
then by Hall’s theorem (Theorem 1 above) we have |C| <
I'(C) < |V|. Critical blocks are those achieving the equality.
Basic property of critical blocks with respect to the possible
perfect matchings of () is as follows.

Lemma 17. Let V be a critical block of a matched formula
@. Then, in every perfect matching of I(p), the variables
from V' are matched to clauses restricted to V.

Another useful property of the set of the critical blocks is
as follows.

Lemma 18. The set of the critical blocks of a matched for-
mula is closed under intersection.

If ¢ is a formula and z is a variable contained in at least
one critical block, then Lemma 18 implies that there is a
unique inclusion minimal critical block of ¢ containing =z,
which is equal to the intersection of all critical blocks of ¢
containing x. If a matched formula has the same number of
clauses and variables, then every variable is contained in a
critical block, since the set of all the variables of the formula
is a critical block.

Definition 19. If ¢ is a matched formula with the same num-
ber of clauses and variables and z is some of its variables,
then let B, denote the inclusion minimal critical block con-
taining x.

The notation B,, does not specify the formula, since it will
always be clear from the context.

Lemma 20. Let @ be a matched formula with the same num-
ber of clauses and variables. Let | be a literal containing a
variable x and let us assume that the formula o[-l] is not
matched. Then

1. the literal 1 is pure or irrelevant in the clauses of ¢ re-
stricted to B,

2. if a clause C of ¢ contains —l, then in every matching
for ¢, C is matched to a variable y, such that B, C By
(where C denotes strict inclusion).

The structure of the critical blocks will be used to show
the following proposition needed to prove Theorem 15.



Theorem 21. Let © be a matched formula. If for every vari-
able x, which has an occurence in @, there is a € {0,1},
such that plx = al is not matched, then ¢ is pure literal
satisfiable.

Proof of Theorem 15. Assume, ¢ is a pure literal matched
formula. Let L be a pure literal sequence obtained by Find-
PLS procedure for ¢ and let v = ¢[L], which is, by the
assumption, a matched formula. Since L is maximal, ¢ does
not contain a pure literal. If ¢ is empty, then ¢ is itself a pure
literal satisfiable formula and we can find a splitting variable
for ¢ by the method from Lemma 11. If ¢/ is not empty, then
it is matched and not pure literal satisfiable. Hence, by The-
orem 21, there is a variable x of ¢, such that ¢)[x = 0] and
[z = 1] are both matched. Since L does not contain a lit-
eral with the variable x, the application of assign(L) and
x = a commute for each a € {0,1}. Hence, L is a pure
literal sequence for the formula p[z = a] and the applica-
tion of assign(L) to @[z = a] leads to [z = a], which is
matched. Hence, for each a € {0, 1}, the formula @[z = a]
is pure literal matched and the variable x is a splitting vari-
able for the formula .

A time polynomial in the length of the formula is suffi-
cient to select a splitting variable x as in the proof above. If
1 is nonempty, the satisfiability of o[z = 0] and p[z = 1] is
guaranteed by the choice of z. If ¢ is empty, ¢ is pure literal
satisfiable and the method from Lemma 11 is used. Hence, a
splitting variable and the results of the required satisfiability
tests can be obtained in a polynomial time. O

Similarly as the class of matched formulas, also the class
of pure literal matched formulas is closed under the unit
propagation. This implies that the unit propagation can be
used as part of the construction of the splitting tree by Re-
mark 5.

Proposition 22. The class of pure literal matched formulas
is closed under the unit propagation.

Algorithms and complexity

In this section, we prove specific complexity bounds for the
algorithms presented in the previous sections. The complex-
ity bounds are derived for the RAM model with the unit cost
measure and the word size O(log ||¢]|), where ¢ is the input
formula. Let us first concentrate on the pure literal satisfiable
formulas.

Lemma 23. A maximal pure literal sequence L for a CNF
Jormula ¢ can be constructed in time O(||]|).

Theorem 24. A pure literal satisfiable formula ¢ has split-
ting complexity O(||¢||). Moreover, the set T' () of the mod-
els of v can be generated with a delay O(]|¢||)-

Now let us concentrate on the time complexity of select-
ing a splitting variable of a pure literal matched formula.
Lemma 25. The splitting complexity of a pure literal
matched formula ¢ of n variables is O(n - ||¢||).

As a corollary of Lemma 25 and the general bound from
Theorem 4, we get the following.

Corollary 26. Models of a pure literal matched formula ¢
on n variables can be generated with a delay O(n? - ||¢||).

Linearly satisfiable formulas

In this section we consider the class of linearly satisfiable
formulas. By results of (Kullmann 2000), this class gener-
alizes both the matched formulas and the pure literal satisfi-
able formulas and, by combining the proofs, also the class of
pure literal matched formulas. In this section, we show that
it is not possible to generate models of linearly satisfiable
formulas with a polynomial delay unless P=NP.

As a consequence, linearly satisfiable formulas do not
have a polynomial splitting complexity unless P=NP. This
consequence follows also unconditionally from a fact that
there is a linearly satisfiable formula which does not have a
splitting variable with respect to the class of linearly satisfi-
able formulas.

We omit the details due to space limitations.

Conclusion and directions for further research

In this paper we have shown that it is possible to generate
the models of a matched formula ¢ of n variables with de-
lay O(n? - ||¢||). As a byproduct we have shown that the
models of a pure literal satisfiable formula ¢ (i.e. a formula
satisfiable by iterated pure literal elimination) can be gener-
ated with delay O(||¢||). We have also shown that this result
cannot be generalized for the class of linearly satisfiable for-
mulas, since it is not possible to generate models of linearly
satisfiable formulas with a polynomial delay unless P=NP.

Let us mention that the procedure for generating the mod-
els with a bounded delay can be extended to formulas, for
which a small strong backdoor set with respect to the class
of matched formulas with empty clause detection can be
found. Assume, B is such a backdoor set for a formula ¢,
i.e. B is a set of variables satisfying that any partial assign-
ment to variables in B leads to a matched formula, or to
a formula containing an empty clause. Then we can gener-
ate the decision tree for ¢ (and thus generate its models) in
time O(2!B! ||¢|| + T(f) n?||¢||). Unfortunately, searching
for strong backdoor sets with respect to the class of matched
formulas is hard (Szeider 2007).

An interesting question is whether our approach could be
used with the parameterized satisfiability algorithm based
on maximum deficiency (see (Szeider 2003)) in order to get
a parameterized algorithm for generating the models of a
general formula.

Acknowledgement

Petr Savicky was supported by CE-ITI and GACR under the
grant number GBP202/12/G061 and by the institutional re-
search plan RVO:67985807. Petr Kucera was supported by
the Czech Science Foundation (grant GA15-15511S).

References

Aharoni, R., and Linial, N. 1986. Minimal non-two-
colorable hypergraphs and minimal unsatisfiable formulas.
Journal of Combinatorial Theory, Series A 43(2):196 — 204.

Bollobés, B. 1998. Modern Graph Theory, volume 184 of
Graduate Texts in Mathematics. Springer.



Fleischner, H.; Kullmann, O.; and Szeider, S. 2002.
Polynomial-time recognition of minimal unsatisfiable for-
mulas with fixed clause-variable difference. Theoretical
Computer Science 289(1):503 — 516.

Flum, J., and Grohe, M. 2006. Parameterized complexity
theory, volume 3. Springer.

Franco, J., and Van Gelder, A. 2003. A perspective on cer-
tain polynomial-time solvable classes of satisfiability. Dis-
crete Appl. Math. 125(2-3):177-214.

Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. San
Francisco: W.H. Freeman and Company.

Genesereth, M., and Nilsson, N. 1987. Logical Foundations
of Artificial Intelligence. Los Altos, CA: Morgan Kaufmann.

Kullmann, O. 2000. Investigations on autark assignments.
Discrete Applied Mathematics 107(1-3):99 — 137.

Kullmann, O. 2003. Lean clause-sets: generalizations of
minimally unsatisfiable clause-sets. Discrete Applied Math-
ematics 130(2):209 — 249. The Renesse Issue on Satisfiabil-
ity.

Lovasz, L., and Plummer, M. D. 1986. Matching Theory.
North-Holland.

Sipser, M. 2006. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston.

Szeider, S. 2003. Minimal unsatisfiable formulas
with bounded clause-variable difference are fixed-parameter
tractable. In Warnow, T., and Zhu, B., eds., Computing and
Combinatorics, volume 2697 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 548-558.

Szeider, S. 2005. Generalizations of matched CNF formu-
las. Annals of Mathematics and Artificial Intelligence 43(1-
4):223-238.

Szeider, S. 2007. Matched formulas and backdoor sets. In
Marques-Silva, J., and Sakallah, K., eds., Theory and Appli-
cations of Satisfiability Testing — SAT 2007, volume 4501 of
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg. 94-99.

Tovey, C. A. 1984. A simplified NP-complete satisfiability
problem. Discrete Applied Mathematics 8(1):85 — 89.
Valiant, L. 1979a. The complexity of computing the perma-
nent. Theoretical Computer Science 8(2):189 — 201.

Valiant, L. 1979b. The complexity of enumeration and relia-
bility problems. SIAM Journal on Computing 8(3):410-421.



